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1 Introduction 
 
The risk and uncertainty concepts have been 
rather recently introduced in the economic field. 
They were first used in the economic theory in 
1944 by von Neumann and Morgenstern, in the 
paper “Theory of Games and Economic 
Behaviour”. But before that, it was Knight who 
had inferred the importance of the risk and 
uncertainty concepts for the economic analysis 
in the paper “Risk, Uncertainty and Profit” in 
1921. A very interesting aspect is that the 
marginal utility in the context of choices in 
risky conditions was proposed by Bernoulli in 
1738. This is considered the starting point for 
the neo-classical economy theory. 
After the World War II the concept of risk 
aversion had been studied by Friedman and 
Savage (1949), and also by Markowitz (1952). 
Pratt (1964) and Arrow (1965) developed a 
measure for risk aversion, later improved by 
Ross (1981). Yaari (1968), Kihlstrom and 
Mirman (1974) defined the risk aversion in 
multiple cases.  Rothchild and Stiglitz (1970, 
1971), Diamond and Stiglitz (1974) studied 
modalities to measure the risk propensity. 
Knight was the first to distinguish risk from 
uncertainty in 1921. He considered that the risk 
refers to the situations in which the principal 
could attribute probabilities to random events. 
The uncertainty refers to the situations in which 

one could not attribute and calculate specific 
probabilities (Keynes).  
In 1951, Arrow noted that the most challenging 
aspect was to specify how risk and uncertainty 
affect the economic decisions. Therefore, it is 
very important to establish a connection 
between the increase or decrease of the 
uncertainty and the principal’s behaviour. Also 
it is important to know how principals consider 
the risky situations when the incomes are 
random. To find the answers, new concepts 
such as choices in risky situations or in 
uncertainty needed to be introduced.  Hicks 
(1931) and Marschak (1938) considered that the 
preferences should be formulated over a 
probability distribution, but they could not 
separate the attitude towards risk or uncertainty 
by the pure preferences over the results.  The 
starting point was random to order randomly the 
speculations taking into account the mean and 
the variance.  
Arrow (1953) and Debreu (1959) explained the 
uncertainty using the preferred states. This was 
used by Hirshleifer (1959, 1966) in the 
investment theory and further developed by 
Radner in the financial field and in the general 
equilibrium theory. 
Nowadays, the risk and uncertainty concepts are 
largely used in theoretical and empirical studies 
analysing economic agents’ behaviour, the 
literature on these topics being really huge.  
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In the first part of the paper we will present 
some classical concepts from microeconomic 
theory regarding optimal choices of the 
consumer: uncompensated and compensated 
demand, the indirect utility function and the 
expenditure function. These concepts are used 
for deriving one of the most important results of 
consumer’s theory – the Slutsky Equation. This 
result shows the relationship between price 
derivatives of Hicksian and Walrasian demands, 
relation that helps to analyze the income and 
substitution effects (the effect of price changes 
on demand). It is also helpful in summarizing 
the goods properties: if they are substitutes or 
complements. In the second part of the paper we 
will consider an investor (a consumer) with an 
initial investment capital (initial endowment) he 
can invest. We will suppose there are two 
investment opportunities: one part of the initial 
capital is invested in one risky active and the 
other part is invested in a safe (without risk) 
active. The randomness’ return of the risky 
asset generates a new optimization problem for 
maximizing the consumer’s expected utility. 
We will solve this problem using some local 
measures of risk aversion (the relative and 
absolute risk aversion index, risk premium and 
the certainty equivalent), to analyze the income 
and substitution effects– in risk and uncertainty 
conditions and we will derive a generalized 
Slutsky Equation. 
 
2 The Classical Demand Theory 
 
In the classical approach to consumer’s demand, 
the analysis of consumer behaviour begins by 
specifying the consumer’s preferences over the 
commodities bundles in the consumption 
set, nRX +⊂ . The consumer’s preferences are 
represented by a preference relation   defined 
on X, relation that is considered to be rational, 
complete, reflexive and transitive. Other types 
of assumptions regarding this relation are 
needed for modelling consumer’s behaviour: 
continuity, monotonicity (or local non satiation) 
and convexity. 
Alternatively – and this is the way we adopt in 
this section for analytical purposes – we can 
summarize the consumer’s preferences by 

means of a utility function. We assume 
throughout this section that the consumer has 
preferences represented by a continuous utility 
function RXU →: , where X is the 
consumption set, containing all possible 
commodities bundles, whose prices are denoted 
by ( )nppp ,...,, 21  or by the price vector 0>>p . 
Uncompensated demand functions 
We now turn to the study of the consumer’s 
decision problem, which is called utility 
maximization problem (Mas-Colell et al, 1995). 
A rational consumer will always choose a 
consumption bundle (the most preferred) from 
the set X, given the prices 0>>p  and the 
wealth level (income level) 0>w , in order to 
maximize her utility level. So, the problem of 
utility maximization can be stated as: 

(P) 
wpx

ts

xU
x

≤

≥

..

)(max
0

 

We denote by ( )wpX ,  the optimal (vector) 
solution of this problem, which is called the 
vector of Walrasian (or uncompensated) 
demand functions and has the following 
properties (Mas-Colell et al, 1995): 
i) is homogeneous of degree zero in ( )wp, ; 
ii) satisfies Walras law: wpx = ; 
iii) if ( )⋅U  is strictly concave, the solution of (P) 
is unique. 
The optimal value of the objective function in 
problem (P) is denoted by ( )wpV , . The 
function ( )wpV ,  is called the indirect utility 
function and has the properties (Mas-Colell et 
al, 1995, Varian, 1984) listed below: 
i) ( )wpV ,  is continuous for all 0,0 >>> wp ; 
ii) ( )wpV ,  is nonincreasing in p and 
nondecreasing in w; 
iii) ( )wpV ,  is quasi-convex in p; 
iv) ( )wpV ,  is homogeneous of degree zero in 
( )wp, . 
Compensated demand functions 
Instead of searching for the maximal level of 
utility that can be obtained given a wealth w, we 
can find the minimal amount (level) of wealth 
required to reach a given utility level u. This 
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analysis consists in deriving and solving a 
“dual” problem to (P), namely the expenditure 
minimization problem: 

(D) 
uxU

ts

px
x

≥

≥

)(
..

min
0

 

The optimal solution of this problem is called 
the vector of Hicksian (or compensated) 
demand functions and represents the least costly 
bundle that allows the consumer to obtain the 
utility level u, given the prices 0>>p . We 
denote by ( )up,ϕ  this solution. It satisfies the 
following properties (Mas-Colell et al, 1995): 
i) is homogeneous of degree zero in ( )wp, ; 
ii) satisfies Walras law: wpx = ; 
iii) if ( )⋅U  is strictly concave, the solution of (P) 
is unique. 
The optimal value of the objective function in 
problem (D) is denoted by ( )upC ,  and it is 
called the expenditure function. Its properties 
are summarized below (Mas-Colell et al, 1995, 
Varian, 1984): 
i) ( )upC ,  is nondecreasing in p; 
ii) ( )upC ,  is concave in p; 
iii) ( )upC ,  is homogeneous of degree one in p, 

0>>p ; 
iv) ( )upC ,  satisfies Shepard’s Lemma: 
Assuming that the derivative exists and for 

0>>p , then ( ),,),( up
p

upC
i

i
ϕ=

∂
∂  for ni ,...,2,1= . 

Relationships between Demand functions, 
Indirect Utility function and Expenditure 
Function – Slutsky Equation (Varian, 1984) 
There are several important identities – 
relationships between demand functions, 
indirect utility function and expenditure 
function. Let us consider the two problems (P) 
and (D), with their respective solutions. We can 
now list the following properties: 
1) The minimal expenditure needed to obtain 
the utility ( )wpVu ,=  is w: 
 ( ) wwpVpC =),(, . 
2) The maximal utility obtained with an income 
equal to ( )upC ,  is u: 
 ( ) uupCpV =),(, . 

3) The uncompensated demand at the income w 
is the same as the compensated demand at 
utility level ( )wpV , : 
 ( ) ( )),(,, wpVpwpX ii ϕ≡ , ni ,...,2,1= . 
4) The compensated demand at the utility level 
u is the same as the uncompensated demand at 
the income ( )upC , : 
 ( ) ( )),(,, upCpXup ii ≡ϕ , ni ,...,2,1= . 
We can state now the following proposition, 
representing the Slutsky Equation. 
 
Proposition (The Slutsky Equation) (Varian, 
1984): Suppose that )(⋅U  is a continuous utility 
function representing a preference relation 
defined on the consumption set. Then, for all 
( )wp,  and ( )wpVu ,=  we have: 

),(
),(),(),(
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∂
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, 

for all ji, . 
 
Proof 
We consider that the consumer facing the price 
vector 0>>p  and having an income equal to 
w  obtain a utility level u , so that ( ) uwpV =, . 
We note that the income w  must satisfy the 
first identity, ( ) wupC =, . The solutions 
(uncompensated and compensated demands) of 
the two optimization problems (P) and (D) 
satisfy the identity: 

( ) ( )),(,, upCpXup jj ≡ϕ , for all nj ,...,2,1=  
We differentiate this relation with respect to ip  
and we evaluate it in ( )up, . Therefore, we get: 
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But, from Shepard Lemma, we have: 

( )up
p
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i

,),( ϕ=
∂
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so this can be used in the previous relation: 
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We finally use the identities written for the 
values ( )up, , i.e. ( ) wupC =,  and 
( ) ),()),(,(, wpXupCpXup iii ==ϕ  and 

rearranging the terms we get: 
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The Slutsky Equation shows a decomposition of 
the effect of a price change on quantity 
demanded in two different effects: 
- a substitution effect, which is defined as the 
effect of a price change on a quantity demanded 
due exclusively to the fact that its relative price 
has changed;  
- an income effect, which is defined as the effect 
of a price change on a quantity demanded due 
exclusively to the fact that the consumer’s real 
income has changed. 
The left hand side of the above relation 


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∂

∂

i

j

p
wpX ),(

 represents the change in 

uncompensated demand holding expenditure 
fixed at w  when ip  changes (change in usual 
demand). The right hand side is a sum of two 

terms: the first term 
i

j

p
up

∂

∂ ),(ϕ
 shows how 

compensated demand changes when ip  changes 
– the substitution effect and the last one, 
including the sign, 
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w
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p
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i
j

i

jϕ
 is equal to the 

change in demand when income changes 
multiplied by the corresponding uncompensated 
demand (the change in income to keep utility 
constant). 
 
3 A Generalization of Slutsky Equation in 
risk and uncertainty conditions 
 
In the classical settings, different authors 
studied optimal consumer’s choices that result 
in perfectly outcomes. In reality, many 
important economic decisions involve some 
elements of risk. In this section we focus on the 
special case in which the outcome of a risky 
choice is an amount of money (Marinescu et al, 
2008). 
We consider an economic agent representing 
the private investors that has an initial income 

0w  (the initial endowment). He has two choices 
(or investment opportunities): to invest in one 
safe active (without risk), with a rate of return 
denoted by r or to invest in a risky active whose 

rate of return is a random variable 
~
e  with mean 

and variance finite.  
We denote by a the proportion of initial 
endowment invested in risky active.  
The agent’s income at the end of the first period 
will be: 
i) The agent invests 0aw  in risky active and at 
the end of the first period he will have 

( )eaw +10  (for a certain value e for 
~
e ). 

ii) The agent invests ( ) 01 wa−  in active without 
risk and he will have at the end of the first 
period ( ) ( )rwa +− 11 0 . 
So, at the end of the first period he will obtain: 
( ) ( ) ( )( )raweawew +−++= 111 00  

or 
( ) ( )[ ]raaewew −++= 110   

We consider that the agent is risk adverse and 
let ( )⋅U  be the von Neumann-Morgenstern 
utility function with the usual 
properties: ( ) 0' >⋅U , ( ) 0" <⋅U . 
Let e  be the mean value of e~ and we denote by 

2σ  its variance, negligible with respect to the 
higher moments. We consider the following 
notations: 
[ ] { } 101 )~1(~ xeawExE =+=  and 22

0
22

~ )(
1

σσ wax =  
We will use an alternative way of analyzing 
consumer’s choices and we consider the utility 
function )~(),( 2121 xxEUxxB += , approximated 
by a dependent function on 1x  and 2x . For this, 
we will use the concept of certainty equivalent, 
denoted by )( 21 xxEC + . 
The certainty equivalent satisfies the equation: 

( ))()~(),( 21212121 xxExxUxxEUxxB C +−+=+=  (1) 
We will also consider the following 
notations: eez −= ~ , σσ =z . Hence 0)( =zE  
holds. Then: 

[ ]))1((),( 2121 xzxUExxB ++=   (2) 
We will approximate the function from (2) by a 
series expansion: 

( ) 22
1

211
2121121 !2

)("
!1

)(')( zxxxUzxxxUxxUzxxxU ⋅
+

+⋅+++≈++

 (3) 
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The right side of (1), ( ))( 2121 xxExxU C +−+ , 
could be approximated (from Lagrange’s 
Theorem) by: 

( ) )()(')()( 2121212121 xxExxUxxUxxExxU CC ++−+=+−+  
(4) 

From (3), taking the “expected value” of both 
sides (applying the operator “E”) we will get: 

( ) 22
1

21
2121 !2

)("
0)~( σx

xxU
xxUxxEU

+
+++=+     (5) 

  From (4) and (5) we will obtain: 
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22)('
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+
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where )(⋅ar  represent the absolute index of risk 
aversion. 
We will approximate ),~( 21 xxB  by: 





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2
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1

2121 xxrxxxUxxB a
σ  (6) 

From the definition of 1x  and 2x , we will get: 

r
x

e
xw

+
+

+
=
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21

0   

or 201 1
1)1( x

r
eewx

+
+

−+=    (7) 

The equation (7) is the income equation or 
welfare equation.   

We define 
e

pe +
=

1
1  and 

r
pr +

=
1

1  , then the 

above equation could be written as: 
210 xpxpw re += . 

Therefore, the problem of choosing the optimal 
portfolio is: 

 
021

21,

..

),~(~max
21

wxpxpts
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(8) 

From Gossen’s Law, the optimal solution must 
satisfy the first order condition: 

 
r

e

p
p

e
r

x
U
x
U

=
+
+

=

∂
∂
∂
∂

1
1

2

1    (9) 

The welfare equation and the condition (9) form 
a system of equations. Solving this system we 
will obtain the optimal solutions *

1x  and *
2x . 

Let ),,( 0wppX re  be the uncompensated 
demand and ),,( 0wppV re  be the indirect utility 
function, both having the usual properties. 
Consider a fixed utility level for the economic 
agent, denoted by b. 
The goal of our analysis is to determine the 
minimal initial endowment that consumer needs 
to attain the utility level b (i.e. the utility level 
associated to one particular social category or 
for people living in a community). 
Now we can state the following nonlinear 
optimization problem: 

 
[ ]

bxxBts

xpxp rexx

=

+

),(~..

min

21

21, 21              (10) 

The solution of this problem is ( )21 ,ϕϕ  or the 

vector ( ) 







=Φ

2

1,,
ϕ
ϕ

bpp re . Then, the minimal 

expenditure function is 
21),,( ϕϕ rere ppbppC +=  and it has the 

following properties: it is concave and 
increasing in prices and b and satisfies the 
Shepard’s Lemma. 
Differentiating the relationships between the 
functions )(⋅X  and )(⋅Φ , we will get: 

e

rex

e

rex

e

x

p
w

w
wppX

p
wppX

p ∂
∂

⋅
∂

∂
+

∂

∂
=

∂

Φ∂ ),,(),,(
111    (11) 

or 
*

1
),,(),,(

111 x
w

wppX
pp

wppX rex

e

x

e

rex ⋅
∂

∂
−

∂

Φ∂
=

∂

∂
      (12) 

The equation (12) shows how the price effect 
(the left side of equation) can be decomposed 
into a substitution effect and an income effect 
(the first and respectively, the second term of 
the right side). 
Analogous, it follows: 

w
wppX

x
pp

wppX rex

r

x

r

rex

∂

∂
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The equations (12), (13), (14) and (15) are 
combined into the matrix form of Slutsky’s 
Equation: 

( )*
2

*
1 ,),(),(),( xxwpXbpwpX wpp ⋅∇−Φ∇=∇     (16) 

 
4 Conclusions 
 
As we already saw, in its standard form the 
Slutsky Equation decomposes the change in 
demand due to a price change into a substitution 
effect and an income effect and the income 
effect was due to a change in the purchasing 
power when prices changed. There was a strong 
assumption made in that model: the money 
income was held constant. In a revisited version 
of the Slutsky Equation, Varian examines the 
case where the money income changes since the 
value of the consumer’s endowment changes 
when the prices change; he then shows that the 
income effect can be decomposed into an 
ordinary income effect (when the price changes, 
the purchasing power also changes) and an 
endowment income effect (a price change also 
affects the consumer’s endowment bundle so 
that the money income changes) (Varian, 2002). 
The Slutsky Equation was also used as a 
standard microeconomic tool to analyse the 
change in demand due to an interest rate change 
into income effects and substitution effects 
(consumer’s intertemporal choices). 
Our approach was based on some classical 
microeconomic concepts from consumer’s 
theory, but we analysed the case where the 
consumer’s choices are made in risk and 
uncertainty conditions, such that we were able 
to derive a generalized form of the Slutsky 
Equation. The model we proposed here could be 
adapted for analyzing the evolution of physical 
or chemical processes (or any type of process), 
having a risk when producing. Hence, the goal 

of the model is to minimize the costs to obtain a 
certain result, a priori fixed. 
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